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Abstract

Defining the solution to a stochas tic different ial equation to be

the solution to the Martingale problem of Strook and Varadhan , we obtain

results on the existence of an optimal stationary control for the averagu

cost per unit time problem, a necessary and sufficient condition fo r

optimality of a control , and a number of other related results.
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1. Introduction

The purpose of the paper is the development of a necessary

and sufficient “Dynamic 1> ro (;Lamming ” like condition , for the average

cost per unit time problem . The condition is similar to those

developed for other problems by Davis and Varaiya [1] and

Bismut [ 2 J. In addition to its intrinsic interest, the criterion

appears to be useful for the problem of approximation and computa-

tion (see the corollary and remark in Section 6). The main Theorems

are 3.1 (characterizing the invariant measure), 4.4 (existence of an

optimal stationary control), 5.1 (characterizing the auxiliary V
U (.)

func tion) , and 6.1 (necessary and sufficient condition for optimality).

Also , a number of auxiliary results are obtained .

We will use conditions (Al) — (A5).

(Al) Let o(~~) denote a bounded uniformly continuous and

uniformly positive definite r r matrix valued function on the

Euclidean space Rr.

Let ~~~
‘ denote a compact convex set in some Euclidean space and

which contains the origin.

(A2) f(•),b(.,•),k(~~,•) 4r~~ rueasurab1e Rr,Rr, ~
-
~d R1 \~a1utd

r r ., r 
~functions on R , R x it’ arid R x it’, resp ., ; b and k are

bounded, and are continuous in their second argument _for each val uc

of the first argument, and b(x,O) = 0. f() is bounded on hounded s

(A3) The set {b(x ,ct),k(x ,~.), a ~ (b(x, ~~),k(x , ‘ i i) )

is convex and compdct for each x £ Rr.

Any measurable ~~~
‘ valued function u(•) on Rr is called

an admissible control. Functions b(•,•) and k(~~,•) are said

to be admissible if they satisfy (A2), (A 3) and have the form

b(x ,u (x)),k(x ,u (x)) for admissible u(•). We will often write

U Uh ( • )  b(~~,u (~~)), k ( )  = k(.,u(.)). Our systems model is the

stochasti-’ differential equation

_ _ _ _ _ _  - . - -  ~~~ . ~~~~~~~~~~~~~~~~~
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(1.1) dx(t) = [f(x (t)) ÷ b U (x(t))]dt ~ ~(x(t))dw(t), x(0) = x ,

where w(.) is a standard Wiener process. In particular , the

process XC .) will be defined to be the solution to the

martingale problem of Strook and Varadhan [ 3 1 ;  hence w(~~) may

be defined implicitly in terms of x(.). As pointed out by

Bismut [2 ], there are a number of advantages to using the

“martingale problem solution ” de finition of ( 1.1), par ticularly when

questions of existence are of interest. Here , only feedback

(~1arkov) controls are considered .

The cost functional is

i r
(1.2) 0(u) = lim — E U k (x(s),u(x(s)))ds = I k(x ,u (xfl~j (dx ),

T~ T x J 0 U

where is the unique invariant measure for (1.1), which will

exist under conditions to be imposed . Also , E~ denotes expec tation

under control u(-), and initial condition x.

In order for the problem to he well  def ined , we need some sort

of recurrence for each control. In a sense , we will assume ((A4) , (A5))

that the effects of f(.) dominate those of b (~~,
.) for large x

and all u(•). Assumption (A4) will be convenient , and (A5), while

avoidable , does provide a relatively simple method for obtaining some

requ ired estimates. Both are satisfied by a large number of problems.

(A4) There is a non—negative twice continuously differentiable

real valued function W
1
(~~) such that W

1
(x) -* as x l -~

and for some ~ > 0 and compact l<
~~
,

(1.3) .J
U
W1 (x) < —c , x / K1, all admissible u (.)

-~
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where

= ~~a~~~(x) 
~~~~~~ 

+ [f.(x) + b~~(x ) ]  ~~
-

~~
---

the differential generator of (1.1), ~~~ 
a(s) =

(A 5) W
2

(x) = W~~(x ). There are constants c
2 

> 0, ~‘ 0,

such that for all admissible u (~~),

( 1 . 4 )  .~/
UW ( x ) < c

2 
— q2

(x) , where q
2
(x) > 0,

~~~ q2 (>)/W 1
(~~) > ct > 0. K

2 denote a compac t set such that

(1
2

(X )  c2 f o r  x / K2.

Remark. Suppose that f(x) = Ax and ~ = f(x) is

asymptotically stable. Then we may use x ’Px = W
1

( x ) , where P

satisfies the Liapunov equation A’P + PA —Q < 0. Also, ( 1 \5 )  h o l d s.

For some additional motivation , let us cons ider a Dynamic

Programming approach. Suppose that there is a smooth func t ion

V (s) and a constant y such that

(1.5) inf [~~~
UV ( )  + k(x ,u(x)) — yJ = 0

u(x)c ’
~

A (X) + inf [V’ (x)b(x ,u(x)) + k(x ,u(x) ) — ‘y~] ,  each x .
u (x)c °li X
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If the solution to (1.1) is well  def ined for  u ( x )  = u(x) , the

minimizer in (1.5), and if

E~V (x(t))/t 
-
~ 0 as t -

~~

then

—

1 u i  u
u r n  

~ 
E,~ k (x(s))ds =

T-~~

If , in addi t ion , E~ V ( x ( t ) ) / t  -
~ 0 as t -

~ ~~, then~ y < 0(u). If

P
U ( x t . )  

~~~~~ 
(P u (X t F) P~~( x ( t ) c F ) )  s t rongly (in

var ia tion) as t - 
~~ , then 0 (u) = J k (x ,u(x))u (dx).

In general , we do not know whether such a smooth V ( )  or an

optima l control exis ts .  Par t  of our aim is to replace ( 1 . 5)  by a

local maximum— principle which does for our problem what the wor~.

of Davis and Varaiya [1 1 or Bismut [2 1 did for the control problem

on a finite time interval or for the discounted control problem .

A one dimensional version — on a finite interval with reflection —

was treated by Mandl F 5 3 ,  and an incomplete development of the

r-dimensional version of Mandi’s result is given in [ 61 .

In Sec tion 2 , the solution to (1.1) is defined , and some

properties listed . Sections 3, 4, 5, 6 deal wi th  the existence of

an invariant measure for each u(s), with certain continuity

properties of the measure with respect to bU (.) and with the

~See Kushner [ 4 ]  for a formal discussion.

~

- - - - ~~~~~~~ .~~~~~~- - -~~
, - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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I
existence of an optimal control , with the existence and properties

of an auxiliary V(•) function , and with the maximum principle ,

resp.

L . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~.
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2. The Solution to (1.1)

- r
Let C, 

~~ 
and ~ denote the space of R valued con-

tinuous func t i ons  on [0 ,~~) ,  and the e—algeb ras  induced by the

coordinate projections x (s ) ,  s < t , and x(S), s -
~ ~

- , resp.,

where x (.) is the generic element of C. Define fN (.): f
N

( x)  =

f ( x )  if x~ < N , and is zero o therwise .  Then , fo r  each x £

the re  is a un ique  measure on (C , ~~) such that fQ~~, x ~ R
N ) solves

the martingale problem of Strook and Varadhan [ 3 1 . There is also

- - x ,N - N
a standard l~iener process W (~

) defined on (C, r’ ,Q
~

) ,  and

adapted to the (completed with respect to Q~~) 
{ r’, .~ } and such tha t

dx ( t )  f~~( x ( t ) ) d t  + ~(x(t))dw
x 1 N (t ), x ( O )  = x , w . p . 1 Q~

Define S., = Cx : l x i < ~~ . We will show that the soiution is

also well def ined for N = - . The s t a b i l i ty  cond i t i on  ( A 3 )  y i e lds

the following result. In the Lemma , suppose (w. 1 .o .g ) t’hat K 1 is in

the interior of S
M
.

Lemm a 2.1.  Assume (Al)—(A2), (A4). Let x £ S~ and N > M .

:)efine inf{t: x (t) / SM — K
1
), ci (K

1
) inf{t: x(t) £ K 1) .

Then (P
N
,E
N , correspond to Q

N)

N W
1

(x )
(2.1) P

~~
fx (t) hits K

1 
before hitting 3SM

} > 1 — _____

where k
M 

inf

I x

(2.2) E
~
c
?4 
‘ 

--  —- —
~

_ .  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
. , •~~~~~~ A
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Proof . By ita’s Lemma , for any t < (~/0 corresponds to u ( )  0 ) ,

~~

ENW1(x(t f lo ) )  = W
1
(x) + E

N J
< W

1
(x ) - £ EN ( t f l c yM ) .

This inequality implies ENW
1(x(c~~

) )  < W ( x ) ,  W (x ) > c E ’~~ , from1 — X M

which both ( 2 . 1 )  and (2.2) follow-. Q . E . D .

Since k
M 

‘ as M ~~~~, it can be shown that (2.1) implies that

(2.3) u r n  sup ~~~ sup Ix(t) I > M} 0, for each x and T.
M-~~ N x -

0 <t < T

By virtue of (2.3), there is a unique solution (P° ) to th~

mar tingale problem for coeff icients (f ,c ) ,  and each x E Rr.

Similarly, since neither the r.h.s of (1.3) nor K
1 

depend on

u ( s ) ,  there is a un ique  solut ion (P~~) to the mar t inga l e  problem

for  al l  X ~ Rr and c o e f f i c i e n t s  ( f + b ~’, c~) ,  where u ( . )  is a d m i s si t l e .

Fu r the rmore ,

(2 . 4 a )  E~~~(K 1) < W 1(x ) / ~~, E~ corresponding to

(2..4b) PU{sup ix(t) I > N }-~ 0 ~~~~~~ N -
~ ~~~~, uniformly in u(.),

X t<T

and in x in bounded sets

(2.4c) P~~Cx (t) hits K1 
before hitting 3SN

} > 1 —

if S
N 1<1 and X C SN.

There is a Wiener process 
~~~~~~~~

( . ) ,  defined on (C , ~~~~~ and

adapted to 
~~~~~~~~~~~ 

(completed with respect to P~~) and such that

(2 .5) dx(t) = [f(x(t)) + bU ( x ( t ) ) ] d t  + c(x(t))dW~
(
~
U (t ) ,  w.p.l (P~~).

~~~~~ - -~~~~—-‘-
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For each real 0 - - T ~‘, define

= 
I 

[c~~~ ( x ( s ) ) b U (x ( s ) ) ]  ‘d~~~’
0(s) - 

~ J i a
_ l

( x ( s ) ) h u ( x ( s ) )  I
2ds.

Then (the proof of (2.6) is the same as that of Theorem 6.2 in [3],

where f(.) ~ 0; see also Girsanov [7])

(2.6) dP~ = exp T
’
~(u) •dP~ on (C , (IT).

Thus , (at least on each (C , 
~
r
~I,
)), for each x all the measures P~

are mutually absolutely continuous , so that a.s. statements with

respect to one are also a.s. statements with respect to the others

on each (C , 
~~~ 

A1so~ ( a . s .  P~~)

( 2 . 7 )  dW X l O ( t )  — ~ 
l ( x ( t ) )bU (x (t))dt =

(See Girsanov [ 7 1 or Davis and Varaiya [ 1 1 )

By [ 3 ] ,  the solution to the martingale problem with co-

N N u . . U -efficien ts (f ,c) or Cf +b ,c), for admissible b ( S ) ,  is a

strong Markov and a strong Feller process and in each of these

cases the measures of x ( t )  have densities with respec t to Lebes gue

measure for all x = x (0) and all t 0. Fur thermore , these

densities are positive almost everywhere. By the stability

condition (A4) and (2.3), (2.4b), these facts are also true for

the solut ion with coefficients (f +b’
~,c) for adm issible b

u (.).

Define P~~{ x ( t ) c F) PU (x,t,F) and denote its dens ity at y by

P
u (X,~~,Y).

+Whenever such differentials are equated , we mean to equate the
corresponding integrals.
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The following Lemma will be useful in the following sLctions.

Lemma 2.2. Assume (Al) — (A2) and (A4) — (A5). Define

ci (K2
) inf Ct: x(t) K~ U K1

).

Then

21W C x )  + c W (x)/rJ
(2.8) E~ o

2
(K2) < 2 2 1 x ~ K1 U K2

.

Proof. By Its ’s Lemma and (A5)

t f l~~ (K

0 < E UW 2 ( x ( t f l c ( K 2 ) ) )  < W
2

(x )  + EU 
JO 

2 

~~~~~~~~~

- u -from which we get (use 
~~~ 

(K
2) <

, o ( K 2 )

0 < W2 (x) + E~ J 0 
[c 2

-~~W 1 
( x ( s ) ) ] d s .

The last inequality, (2.4a) and r (K
2
) < c (K

1
) imply that

0 < W2
(x)  + c2E~ a(K 1) 

— a

The integrand equals

EUI
C ( K ) )(G(K2) —s) .

Hence , the integral equals E~ a
2 (K

2)/2 , from which (2.8) follows.Q.E.D.

— ~~~~~~~~~ ----- . - —-j — .— -- -—~~~~ -——
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3. The Invariant Measure

Let G and G
1 be spheres in Rr , centered at the origin ,

with radii ‘
~ and y

~~
, resp., y < y~~, and boundaries F a r : J

resp., and with G D K
1 

U K2. Define r ’ = i r i f C t :  x ( t ) £

= inf Ct: x(t) C F ) ,  = inf{t: t > T~~~, x (t) C F ,~}, and d e f i n e

t and r~~, n 1, recursively by r~ = infCt: t T~~~~1, x(t) C

= inf{t: t > i , xCt) C F~~}. T will be used for — ‘1 = T 2 ,

when x C F. Define = x(i ). Then , if x ‘
, : v )  is a (hczm~~eneoug)

Ma rkov chai n on the state space F , and Khacminskii 1 8 1 uses it to

construct the invariant measure for Cx(t)~~. Let i(A) denote the

amount of time (j I
CX (t\ A )dt) that xCt) spends in a Borel set A

‘ 0  ‘- /

durire [0,12] [0,11, when x(0) = X C (if xCO) F , then = 0).

Theorem 3.1. Assume (Al) — (A2) , (A4) . Taen there is a

e o f l C t a l l t  C
3~

u( 3 . 1)  sup E T  < c3 
< = .

Both {Xn
} and x(.) have unique finite invariant measures (for

each u (S )) and 
~~~~~~

, resp., where fo r  each Horel set A

(note that , ( R r) = 1)

(A) =

(3.2)

=

The measure u has a density (with respect to Lebesgue measure)

w h i c h  is positive almost everywhere and the v a l u e  at the point y

is given by 

~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~-
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(3.3) J p
u (x t y)JJ (dx).

For any bounded Borel function F(),

(3.4 )  J F(x)~~~Cdx) = 
J F~~~~~~~~~ J 0

F ( 5 d5.

A lso

(3.5) sup E~
1

T
1 

< W
1

(x )/ c , x / C,.

For each Borel set A and bounded measur able func tion F ( S ) ,

(3.6) PU (x,t,A ) ~~~
(A ) ,  E~ F (xC t)) J F(x)~~~(dx), as t ~

Proof. Set = inf{t: x (t) / G1
}. To prove (3.1), we

first show that , for fixed t > 0 and some real c < 1

(3.7) inf P
U

j T~~ < t} > 1 — c.
x ,u

(3.7) follows from the fact that there is a c < 1 such that

inf P~~{supIx (s) I > y
1

} = inf P~~{eupjx + JS ( f ( x ( s ) )  + bu (X(5)))dS
x,u s”zt x ,u s<t 0

+ J 0a (~(s Wx~
U (s)  I 

~

~ inf P~ fsupIJa (x(s))d~~~
u(s)I > + ~x ( + Kt} > 1 — c ,

u ,xcG s~t 0
1
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where K is a bound on if  + b
~
’l in G~~. Now

> nt} = EUI{ , ( l) t } IC , t }

= E
~
I{T ,>(fl_l)t}E (flt t~~(T t > t} 

< E
~
I{T~~> (n_l)t}

C

which implies that ~ nt = C
4 is an upper bound to ~~~~~~ Hence ,

< c
4 

for x r F. Indeed , (to be used later)

(3.8) E
U
(T ,) a 

< ~(nt)aj~~ < 
~~~, x

Eouation (3.5) follows from (2.4a), since G D K
1 

Li K 2. Thus , for

X C F ,

E
U
T = E

u ds + EU I dsx x

= E~~T ’ + E
~~
E
~~(T ,) T

l 
< C

4 
+ E~~W1

( x ( T ’))/c < C
3

for some real c 3, which gives (3.1).

In [ 8] ,  Khasminskii proves that there is a unique invariant

measure 
~u 

under the conditions (i): PU (x,t,A) > 0, all open A , a l l

x and all t > 0, and (ii):that x(.) be recurrent (Khasminskii’ s

def inition of recurrence is implied by (3.5)) and (iii): x(~~) is a

strong Feller and a strong Markov process. Under the additional

cond ition (3.1) (for fixed u (’)) there is a unique finite invariant
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measure p given by (3.2) ([8], Theorems 2.1, 3.2 and 3.3).

Equations (3.3) and (3.4) follow by simple calculations.

Since 
~ 

and PU (x,t,.) all have densities which are

positive almost everywhere (all x , and all t > 0), they ar e

mutually absolutely continuous. Equation (3.6) then follows from

[8] ,  Theorem 3.4 or Doob [8], Theorem 5 (l et h is ~ equal our 
~

and his P
1 

= 0), since p and P
U ( x t . )  are mutual ly absolu te ly

continuous for t > 0. Q.E.D. 

~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Existence of an Optimal Control

Theorems 4.1 and 4.2 provide some preliminary results. Theorem

4.3 proves that, in a sense, the invariant measure is continuous

in the function b
U (.). This leads directly to the existence

Theorem 4 .4. Define g ( , •)=(b (• ,~~) , k ( ~~,~~)).

Theorem 4.1. Assume (Al) to (A3). Let CU nI ( . ) }  denote a
u u

sequence of admissible controls, and write g
fl (.) = (b r~(.),k 

fl~~~~~~)

If there is a bounded measurable function g(.) such that

1~~(x ) d x  - -

~ ~~(x)dx , all Borel A ,

then g(•) is admissible in the sense that there is an admissible

u(S) such that 
~~

( .)  = (b u (.),ku (.)) , for almost all x.

Proof. The theorem is a standard existence theorem . See

Roxin [10] or McShane and Warfield [11] . By an argument such as that

used by Roxin [10] , g(x) c = g ( x ,~~ ) ,  for some a £ E

for almost all x. We can assume that the conclusion holds for

all x. Then the theorem follows by the implicit function theorem

in [ill . Q.E.D.

A family {P a} of measures on R
r is said to be tight if

for each c > 0, there is a compact KE such that 
~~~~~~~~~ 

< C ,

all . Let 2.- (~~) denote Lebesgue measure.
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Theorem 4~~2. Assume (Al) — (A2) , (A4) — (A5) . Then {i . ,

u ( . )  adm.issib1e~ is tight. Also, p
~~

(A) -
~ 0 as Z(A) -

~ 0, uniformly

in u(’),A.

Remark. The theorem is true, but harder to prove , without

(A5). Since (A5) will be used later anyway, we use it now to

simplif y the proof.

Proof. Since tiu
(R r ) is bounded uniformly in u (s) (by

virtue of (3.1)) to show tightness, we only need to show that (refer to

the definition of p in (3.2))
u

su:~ E~~r ( S~~) -
~ 0 as N -

~

XL I’
U

where S~ = {y: IY ! > N). Recall that G
1 
D K

1 U K2 , and assume that

~v: y~ 
- N }  ~ G 1. (See (A4) , (A5) for the definition of K

1
,K

2
.)

Then , fo r  x c F ,

(E~~T (S~~) ) 2 
=

< sup E~ T~~
.sup P~~fT(S~~) 

> o }  E M1M~ .XCF
1 

xci’

u U

By (2.4c), M~ < sup Wl (x ) / k
N and by Lemma 2.2, M1 < x • The f i r s t

xcF
1

assertion of the theorem now follows, since k
N 

-

~ 
cc as N •

Fix c and (by tightness) choose compact K
~ 

such that

> 1 — c, all u(). Then , for t > 0,
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u u(A) = J p
~~
(dx)P (x ,t,A) + J p (dx ) P  (x , t ,A) <U r K U

R— K  c
1:.

C + sup FU (x ,t,A )
x K

Also , by ( 2.6) (recall that the superscript o corresponds to

a = b = 0),

[P U(x tA ) ]2 = [E~ If (t) A }e~~ ~~ (u )J 2

< E
~
I
{ (t) A}E

° exp 2ç~~(u ) < constant.p°(x ,t,A) .

The last assertion of the theorem follows from the last two inequalities

since r is arbitrary and P°(x ,t ,A)  -* 0 uniformly in x r K
~ 

and

in A , as ~.(A) 
-

~ 0. Q.E.D.

Theorem 4.3. Assume (Al) to (A5). Let b (.) be a bounded- - 

U
measurable function, and Cb fl

(~~~~ } admissible, such that (write sub

or superscript n for u0)

J b
1’1
(x)dx -

~ J~~~
(x)dx , all Borel A.

Then (Theorem 4.1) there is an admissible u(.) such that S (’ )  =
Ub ( . )  a.e. Also,

(4.2) exp ~~(u~ ) -* exp ~~(u)

weakly in L1 (with respect to P~ ) as n -
~ ~~, for each x and

t > 0. In particular,

l.A — ‘~-
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(4.3 ) P’~(x ,t ,A)

(4.4) En F ( X (~~) )  E~F(x(t)), each x, t > 0, Borel A , bounded

measurable F(S).

(4.5) 
f 

p (~x)F(x) J P
~~
cdx)F(x), F(S) bounded and measurable.

Proof. The convergence (4.2) is proved by+ Bismut [2 ],

Theorem IV— 3, and (4.3), (4.4) follow from that convergence and (2.6).

Since is t ight, it is weakly sequentially compact ,

(Billingslev [12], p. 37). I.e., each subsequence contains a

further subsequence ~r p 0 } such that , for some probability measure .~~~,

1

J F(X)P~~ (~~) J F ( x )~~( d x ) ,  all bounded continuous F ( )
1

(Billingsley [12], pp. 35—37). Let n index such a convergent sub-

sequence , with (weak) limit ~~~.

Let F(’) be bounded and continuous. Let £ > 0 and define

K as in Theorem 4.2 and write

J p (dx)F (x ) = J Pn
(dX)E

~
F(X(t))

= 

~K 
p (d x ) E ~ F ( x ( t ) )  + 

rT 
Pn

(dX)E
~
F(X(t))•

c R
~~

K
~

undereach control ,
The second term is < € supiF(x)i . Since x(.) is a Feller process

x

l~~F(x(t)) is continuous in x , for each v(.). Then , th e f u n c t ion

~ In [ 2 ) ,  f = 0, but the proof is e x a t l y the same. 

—-
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Ff~F(x (t ) )  is continuous in x and, converges to the continuous

function E
~

F(x (t) ) ,  by (4.4). This convergence implies that ,

for each 5 > 0, there is a Borel set A~ C K~~
, with  Z (A~ ) <

such that IE ”F ( x (t ) )  — E~F(x (t)) J < c for large n , and x ~ A , x ‘ K

Those estimates , Theorem 4.2, the arbitrariness of ~ and the

weak convergence imply that the f irst term on the right goes to

I 
~ (dx)E~ F (x (t) ) ,  as n -~ cc , Since the l.h.s. converges to

K
£

I ~i (dx)F(x) , and > 0 is arbitrary, we conclude that

~ (dx) F (x)  = J ~ ( d x ) F~ F(x (t)).

This equation together with the arbitrariness of t > 0 and F(S ),

implies that ~ is an invariant measure - under control u(’). Thus,

the uniqueness Theorem 3.1 implies that u = : .  Since the result

does not depend on the selected subsequence , we have that n

weakly, as fl -~ r,
, and (4.5) holds for bounded and continuous F(’).

Let F(S) be bounded and measurable. Then , for t > 0, the

invariance of p implies

J Pn (th~~~(X) = J ~~~~~~~~~~~~ F~~(x) = E~ F(x(t)).

By the strong Feller property , E”F(x(t)) is continuous i—i x.

Now , as in the proof of (4.5) for continuous F(S), the almost

uniform convergence of F~~(x) to E~ F(x(t)), Theorem 4.2 and

the tightness and weak convergence of C u )  imply

‘

I

- ~~~~~~~~~~~~~ 

. 
- -  - - —~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ 

.- --
~~~~~~

- -~~~~~~- - -  - _ ~~~~ -~~~~ - _~~~~~~~~~~~~~~~-
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J ~~~~~~~~~~~ ~ J P~~(dx)E~ F(x (t)),

which must also equal the l imi t  of J p (dx) F (x ). Th is impl ies

(4.5), since by the invariance of ~~~~ the r.h.s. equals

(dx)F(x). Q.E.D.
U

Theorem 4.4. Assume (Al) to (A5). Then there is an optimal

admissible control.

Proof. Let {ii~~~(~~~) }  denote a minimizing sequence. Then

lim 0(u ) = inf 0(u). Let n also index a weak star (o(L ,L
— n 1

u(.)

topology) convergent subsequence of Cb~~(~~) , k”(~~)} wi th  l imit

(b(~~) , k(.)), where we let n replace the index u~~. There is an

admissible control u ( S )  such that (Theorem 4.1) (b(),k ( ) )  =

(b~~(.),k
U (.) ) . If k (S) does not depend on the control , then

0(U
n
) -* 0(u) by (4.5). Hence , in this case there is an optimal

control.

Now let I~(~~) depend on the control. Let F ( )  be a

sequence of bounded measurable functions which converges to a f unct ion

F(.) in the weak star topology. Then~ (Ilismut [2], Proposition IV—4 ,

p. 48)

r t ft
F (x(s))ds -

~ 
F(x(s))ds

10 n

in probabi l i ty  (P~~, each x), as n • cc~ Note tha t E’~ exp 2:~~(v)

is bounded uniformly in x and in the control v(.). Let

+In [ 2], f = 0, but the proof is exactly the same -~cr our case.

~ 

~~~~~~
-
~~~~~

—- - -  
~~~~~~

-
~~~~

--
~~~~~~~~~~

- - -
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be defined by Fn (X) = k(x,u~~(x))~ and set F(x) k(x,u(x)).

By the convergence in probability, the convergence (4.2) and the

boundedness of E~ exp 2 ç~~(u) uniformly in n,x , we have

EX~ f~ (x(s))ds = E~exp ~~ (u) J:
Fn

(x(s))ds

~ E~ exp ~~ (u) J
F(x(s))ds

(4.6)

= EU I F(x ( s )) d s  (a cont inuous
x

function of x).

Integrating the left and right sides, resp., of (4.6) with respect

to p and 
~~~~~~~ 

resp., and using the invariance of these measures,

yields the two equations

(4.7a) t~~ (u~~) = J p~~(dx) J

t
E~~ k (x (s ) , u (x ( s ) ) ) d s

r t
(4.7b) t~~(u ) = p ( d x )  E~ k (x ( s) , u(x (s)))ds.

J U  
~o

Now, (4.6) implies that the right hand integral in (4.7a) converges

to that in (4.7b) for each x. This, together with the tightness of

the last part of Theorem 4.2, and an argument like that used

in the proof of Theorem 4.3 to show (4.5) yields that

0 ( u )  -
~ 0(u). Q.E.D.
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5. Lh~ Auxiliary V
”(•) Function

Our aim is to get a replacement for the V(.) function in

(1.5), which will Play an important role in the sequel.

In this section the co’-~tro1 u(.) is fixed , and we return

to the Markov chain 
~~~~ 

of Section 3. For a measurable set

r F, let ~r (x,y) = p U
{~~~

1 ~ 
y}, x r F, and recall that the unique

invariant measure for CX } is denoted by p . Let ~ be af l  u

finite measure on I’ . The chain CX is said to be uniformly
fl

recurrent if for each mea surable y C F such tha t 
~
(y) > 0,

(5.1) 7 pU~~ C ~~~ , y ,  i ~ m} 
-
~~ 1 uniformly in x c F ,

m=l X m i
as n

(Orey [13], p. 26). A sufficient condition for (5.1) is Corey [13] ,

p. 29) that if ~(‘y ) ~ 0 then there is an n < cc and c ~‘ 0 (perhaps

deDending on 
~~) such that

(5.2) 
m~ l~~~~~

m 
~ ~~~ 

~~
‘ , L < m} > C

for all x c F. If the chain is uniformly ~ recurrent and a-periodic

then there are constants C and r r (0,1) such that

(5.3) IP~ Cx~ c - 

~~~~~~ 
I

uniformly in y and x c F (a consequence of equation (6.2) in

[13] , p. 26, and the invariance of 
~
). Thus , the n-step

transition probability (x,~~
) converges to in variation ,

at an exponential rate.

Define , for x £ R
r (see Sect ion 3 for the definition of T~~,T

and ~T )

~ 

- _ -  --~~~-. --- -- -
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(5.4) ~U () = ~~ J [k U (x(s)) - 0 (u)]ds

n T
1

+ lim~~~~~[EU 
J T 

kU ( x ( s ) ) d s  - J  
~~~~~~~~~~~~~

( 5 . 5 )  VU (x) = E~ KU (x(s ))ds + lim ~
U (x ( s ) ) d s

f l

where k
u
(X) k(x ,u(x)) - e(u).

Theorem 5.1. Assume (Al) — (A2), (A4 ) - (A5). Then V~
’(x)

and v
U (x) are well defined. There are constants C0

,C1 
such that

V~~ x) < C
0 

+

(5.6)

Iv ”
~~x) I < C

0 
+ C

1
E~~T1.

The tail of (5.5) (E~ i~~ goes to zero as n ,m -~~~, uniformly in

x, and E~ J i~
1
(x (s))ds is bounded uniformly in n and x £ I’ .

0

Proof. Let ~ 
Q = Lebesgue measure on F. 

~
‘
~~
(x,y) > 0 if

is open in F . Then Tr
~~

(x ,i) > 0 if (y) 0. Since

is cont inuous (by the strong Feller proper ty - it also follows

from the asser tion GO of I(hasrninski in [81, with a suitable definition

of u,F there), inf 1r
~~

(x ,y) > 0. Thus , by the criterion (5.2),
xc i’

with n = 1, Cx } is uniformly 2~—recurrent.n

Let F(.) be a hounded measurable function on F. By virtue

of (5.3),

~~~~~~~~~~~~~~~~~~~~ TI1I .... 1 I F .. 1 1 ~I I I 1 I f l I i II f ~~~~~
-
~~

-- —
~~~~~

- — —
~~~ - - - - - - - —— — - - -- — 

~~~~~~~~~~~~~~~~~~~~~ 

_

~~~

_ • _

~~~
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( 5 . 7 )  
~~ 

E~ F ( X ) - 

~~~~~~~ 
I < constant , x r F.

Let F(x) = E~ k
U(x ( s ) ) d s , which is bounded on F by (3.1).

Note that

T n+1
E~~~ ( X )  = EUE~ [ kU (x ( s ) ) d s  = E~ k

U
(x(s))ds.

X - 0 ‘1
- 

n n

Then, by using (3.4) and (5.7),

~
Tn+1

(5.8) ~~IE~ J T~~ 

kU CxC :))ds - I < constant , x c F ,

This , tu-~et her with Ik
u (x(s))ids < ~~~~~~~~~~~~~~~~ implies both

x

that V
U (.) is well defined and also the first line of (5.6).

Now , redo the above argument with F(x) = E~~T , x £ F. Then

(5.9) ~~ 1E~ E~ — ~~ (dx)E
U

T I < constant , x F.
n 0  ~i’n

Noting~ th~ t J
~~~~cdx) E

U
r = ~~~(R

r
), the convergence in (5.8) and

n+ 1
(5.9) allows us to replace ~u

(R r) in (5.8) by EUEU T = E~ I ds ,

and still to get convergence. From this , we get both that V~’(~~)

is well defined, and the last bound in (5.6). The last two

assertions of the theorem follow from (5.8) and (5.9). Q.E.D.

The Lemma gives some useful estimates.

~See (3.4), with F(x) 1. 

- - — —~~ ---~~—-~~ - - -~~~~.— -.—~
_._--—-- ~~~~~~~~~ ~~~~~~~~~~
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The constant C may have different values in each usae~~.

Lemma 5.1. Assume (Al) — (A2) , (A4) — (AS) . Then, for all

admissible u( - ) ,v(- ) and al l  x , s > 0, t > 0, and Markov times -
~~ < t.

(5 . 1 0 )  E~~ iV
u

( X ( t )) I  < C [l+W
1

(x ) +t]

(5.lla) 1 (t) iv (X (t+s) )i < C [l+W1
(x(t))+s]

(5.llb) 1
~~~~~

’
~~~~~~~

5+t)
~~~H 

< C [l+W 1(x(t))+sI, 
w.p.l for

anv Markov_ time n -‘ t

(5.llc) E
~~Ct )

W
i
(X (t+s)) < C [1

~~
W
~~

(x(t)) + s] w.p.1.

( 5 . 1 2 )  E V ~
’(x(~~)) 

2 
< C[l+t+w

2 (x)], each u(~~),v(~~) ~~ = --

~ n t

(5.13) ~ (dx) v
U
(x) -: , P

~~
Cdx) P1

(x) < ‘-
, each u ,v.

Proof. J3v (5.6),

E
\T !V U (x(t))I < constant [l+E~ E

u
(t)Tl].

By (A4), there is a constant c~, such that .~/
V
W1

(x )  C
1
, all x

and v(•). Thus , by an application of Its’s Lemma ,

E~ W1
( x ( t ) )  W

1
(x) + £

1
t.

The last two equations and the bounds (3.5) and (3.8) imply (5.10).

i’quation (5.11) followj by similar calculations

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-

~~~~~~- --~~~~ --~~~~~~~~ -
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We prove (5.12) only for a = t. The general proof is

similar. Wr~ te

vU (x(t)) < C [1+E~~~~)T1
] < C[l+W

1(x(t))].

Continuing, and using (5.llc) and (A5),

E~~ V
U
(x(t)) 2 

< CEV [ l+W
2

( x ( t ) ) }  <

C [l+W
2 
(x)+t]

To prove (5.13), define = inf (t: Ix (t lI ’ > N ) , and for  each
integer 

~ define 
~i~(x) = min [W

1(x) ,M], and note that

(by (A5) and Ito ’s Lemma )

E
~
W2(x ( t f le

N
)) < W~~(x) + E~

Thus, by bounding q
2
(~~) and letting N

0 < W
2 ( x )  + EV

Divide t~~ last equation by t, let t ~ ‘ , and get (using (3.6), the

convergen(-(~ o~ P” (x ,t,.) to the invariant measure

c
2 

> u r n  
~ f aE”W~~(x (s))ds 

~ J 
P~~

(
~~~

)
~~~~

(x ) .

_ _
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Hence , c2 (dx)W
1
(x). This , together with Vu (X)

C~~[l-+- W1
(x)J, implies (5.13). Q.E.D.

Theorem 5.2 will be used to obtain the optimalitv criterion in

Theorem 6.1.

rheorern 5.2. Assume (Al) - (A2 ) and (A4) - (A5). Then

is continuous and the process M~ given by

V
u ( x ( t ) )  - VU (x) + ~~~

U
(x(s)) ds

is a continuous square integrable martingale, adapted to 
~~~ 

and

under P~~, each x.

Proof. First we note several facts. vU (.) does not depend

on G~~. If < y ’ < ‘

~~~~~~
, and G~ is a sphere wi th rad iu s ~~~

‘
,

then several cycles (F F’ , etc.) of the process for the G~ case

may be included in one cycle for the G
1 case , but the values of

uV ( . )  are the same. Also, as 4- ‘y’, sup E r  0. Note also that
xc r

inf P~~(~ > T} -
~ 1, as n ~ cc~ each T <

Let denote the largest integer i such that T~~ < T.

Write ~
1J
(x(s)) as k(s). It will be shown that

u c m  A
(5.14) lim lim E J k(s)ds = 0, uniformly in bounded x sets.

T~~ m ,n-~cc X 
~T

- —-—-“ ~___s_ ~~~~~~~~~~~~~ _-=~- - ——— - .--— . —_-- --
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This will imply that

T
V
u (x) = EU I ~ (s )ds + c (T ,x),

~ J O

where c (T,x) -
~ 0 as T ‘-

, uniformly in bounded x sets. This

and the strong Feller property impl y that  VU (.) is continuous.

Now , for some constan ts C~~, and any integer Q,

T 
T N + l- m A r T

lim E
U I k(s)ds < E’~

’ k(s)ds
x l  — x Jm ,n T f lr  T

n

T.~~1
+ E~

a 
~ H k(s)ds~i>n ~T.T i

T -

u
< C1E~~~T~ +1 

- T
N I + ~ 

E~~ I k(s)ds~ + C2
EXTQ

I
{Q>N Y

T ‘J’ 1
~~Q ~~i 

T

The first and third terms on the right can be made arbitrarily

small (uniformly in bounded x sets) by selecting large T and

small and large T, resp. The central term can be made

small , uniformly in x , by choosing Q large. This implies (5.14)

It can be shown that

s+t
E~ (t) [Vu(x( t+s) )  — vU(x(t)) + J i~~(x(v))dv I = 0, all s > 0, t > 0,

where the conditional expectation above exists by Lemma 5.1. The

martingale property follows from this. The continuity and square

integrabil ity follow from the continuity of V
u (.) and (5.12),

resp. Q.E.D.

- - - - : -~ , - _
- - -

- —- —- fl;_
~_fl ._

- _ — — -
~~~~~~~ - -_.- — - - — - —..~-;-- ~~_ ——

_ _ _ _ _ _ _  ~~~~~~~~~~ __~~~~~~ !_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. The Maxintun Principle

Let u (S) be admissible. It will be seen in Theorem 6.2

• that there is a Borel function (a r—row vector) ~U ( )  such that

for each x i Er

It
= ~p

U (x(s))o(x(s))dw
X
~
u (s) w.p.l P~~,

~o
( 6 . 1 )

u i  u 2
Ex J ( x ( s ) )  I ds < cc~

J O

Let v (s) be admissible. Then x() satisfies (w.p.l P
V)

dx(t) = [f(x(t)) + b~~(x (t))]dt +

By (2~~7), we can suppose that (w.p.l P~~)

(6.2) dW X 1V
( t )  = dW

X
~
O (t) — l l

(x(t))bV (x(t))dt

= dWX~
U (t) + o l (x(t))(bU (x(t)) — hV (x(t)))dt.

Since P°,P
1
~ and P~ are mutually absolutely continuous, all a.s.

statements with respect to one are also a.s. statements with respect

to the others.

Theorem 6.1 is the “maximum” or “Hamilton—Jacobi” principle,

a natural development for our problem , of some of the ideas in [11 and 12].

Theorem 6,1. Assume (Al) — (A2), (A4) — (A5), and let u(),

v (.) be admissible. If

- ‘n.- 
~:-.

_ _ _ _
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(6.3) e
U l
~~cx) = (k’

~(x) 
— k’~

’(x)) + ~)
U (x)(bU (x)_b

V (x)) Q

on a set A of positive Lebesgue measure, then there is an

admissible control v () such that 0(v) < 0 (u). The condition

e~
a
~~
.l (x) < 0 a.e. for each admissible v(.) is necessary and

sufficient for u (•) to be optimal.

Proof. First , we derive the basic formula (6.5). Using (6.1), (6.2)

and the definition of yields (a.s. P~~)

t—
0 = V

U (x(t)) — V
U ( x )  + 

I 
kU ( x ( s ) ) d s

- (x (s)) Cx (s)) [dW
x
~
v (5) - 

-l (x (s)) (b U (x Cs)) - b
y 
(x Cs )) )ds].

Define

-t

N min {t: u (~~~~~)o(x(S))I
2dS N}

- 0

Then

t
N

(6.4) 0 = E~v~
’(x(tfli )) - V

U (x) + E~

t ~
+ E~ J ~~(x(s)) [b

U ( x ( s ) )  - bV (x(s))]ds

where the expectations exist by Lemma 5.1.

By the uniform integrability implied by (5.12), the first

term on the r.h.s of (6.4) tends to E,~
’V~~(x(t)) as N -~ cc~ Also , by

(2.6) (use W~ ”~ in ‘~~(v—u) not WX I O ),
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~ j I~~~~ (~~Hds EU exp (~~ r _ i ~ ).J ~~~(xCs) )jds
tñ

N 
X tflO

N

[E ~ exp ( v— ~ , l/2 [Eu (f
t 

I~~
U (x(s))I dS)2J

/ 
A A

t fl~ N

A
1 

< -
~°, and A2N 0 as N -* cc by (6.1). Thus , we can replace

t 1) N by t throughout (6.4). Setting = 0 in the above

equation yields

EV J k,u (x ( s ) )  (ds < constant [EU 
J
~~~~~~~~5 1

2
ds1~~~

2
.

But
EU I~

U ( x ( g ) ) j 2 
constantfE~~ V

U (x(t)) — vU (x) 2 
t

2
r

0 x

< ~~nstant{l + t +

Then by the last inequality , Swartz ’s ine~ u i lit ’ - , (5.llc) , (AS) and

(5.13), E~ 
1
t
~ U (x(S))[b U

CX(S)) - bV (x(s))]ds is inteqrable with

respect to -- V

Furthermore , with e
N 

fl t set equal to t , the E~ can be put

inside all the integral signs in ((.4). f ln in c ~~‘i— arv~ ir~~.~~Tr .~~f i n a

each term with respect to ps,,, and using the invariance rn
(under contro l v(.)) , yields J P

~~
(dX) EE~V

U (x (t)) — V~ (x) I = 0 and

0 = J d s  J P~~( ) { ( x
~~~ 

+ ~
U
(~~~~~) [bU (x(s)) - bV (x(s))I }.

~ow subtract the zero quantity J Pv~~~~~~~~
(X) ) from the above

eriuation , and use the invariance of (under control v(•)) to get

- 
:, ~~
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0 = ~[- p (d,x){(~~~(x) - ~V~~~~) + I~)
U
(x) (b

U (x )  - b
v
(x))]},

or , equiva len t ly

(~~.5) 0 = 
~~

C
~~~~

) [e U
~
V (x) + 0 (v) - e ( u ) ] .

Next, let A = fx :  e~ lv(x) > 0) and let ~ (A) > 0. Define

the admissible control v() by : ~~Cx )  = u(x) on Er 
— A , ~ Cx) =

v (x) on A. Since (6.5) holds for all u(•),v (•), eU f~~(x) > 0 and

0 = J ( d x ) [ e u~
v (x) + e C~ ) -

But e~~ l V
(x) > 0 on A , and p ( A )  0 by Theorem 3.1. Thus ,v

< 0(u) , proving the first assertion of the theorem. The

second asser tion f ollows eas i ly  by the  same type of ar gum ent on

(6.5). Q.E.D.

Remark. The reason for inserting the corollary is discussed

after the proof.

Coroj)~~~~. Assume (Al) to (A5). Let u(s) be optima l and

v (.) an admissible control. Then

(6.6) 0(v) = ~ (u )  - J Uv
’ X

~~

~~~~ !
U
(.) be bounded on bounded x-sets. For each C 0, let

----

~

-~
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J ( ~~) denote a (r—row vector) Borel function such that

K
C 

- J~~(x) dx -* 0, each bounded se t K , as c - * 0,

( k .7 )

SUp Cx) I < 
~‘ , each bounded set K.

C

~~t K denote a• fixed compact set in R
r
, which is the closure of

its interior. Suppose that the function v~ (~~~) is calculated by

(6.8) v (x) = arg inf [ k ( x ,c~) + ~ (x)b (x ,a )1 , for almost
C-

all x c K ,

v (x) = 0 , x K.

Then v ( - S ) can be assumed to be admissible, and

(b .9) H~ ~ Cv ) < 
~~ Cu) - lim p Cdx) E (k U (x) - ~O 

~~~~~~~~~ 

, u 
Cx) h

U 
Cx )]

— 

R
n
—K

Proof. EqUation (6.6) is just (6.5). 13v the complete lattice

property ([14), p. 302) of L
1(K) , the inf in (6.8) can be assumed

to be in L
1
(K). Then , by the proper t ies of ~~,b(~~),k(~~) in (A2) and

(A3) , we get that the inf (evaluated at x) is in the set

k(x ,~~) + p (x)b (x ,~k), for  almost al l  x ~ K. Then , the implicit function

theorem cited in Theorem 4.1 can be used to show that there is an

admissible control which attains the inf almost everywhere . We call

this control v (’).

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
::-•~~~.~~~~ -•
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Note that , if f C
(x )  -

~ 1 (x) for a fixed x ~ K , then

(6.10) inf [k(x ,~~) + ~~ (x )b ( x ,a)I -
~ inf [k (x ,~~) 

+ 
U (x)b(x , z ) ] ,

C

as c 0.

\Lso, the L
1 
converjence (6.7) implies that for ca -h S 0, th~ :e ~s an

0 and a set A c K with c
~
(A
~~~

) < f or ~ c , and such

that I ~~~x) — c
U
(x) I < ~ for x ~ A 

~~~

, < c~~. This , t~~~e-ther

with (6.10), implies that the difference between the sides in (~ .10)

converges in L1
(K) as c 0. Note that the r.h.s. of  (~ . 10)

eeuals k
U
Cx) 

U ( x ) b U (x) (almost everywhere) Lv c)p~~1mali ty of •~ (~~

and the theorem . Now , by (6.6)

V

(v) = ~) ( u )  - (dx) [(kU (x)_k (x)) ~~) (~~~U (< ) ~~~~ (x))]

(~~.l l )
- L~~ (dx)I (k

U (x)_k O (x)) + ~~
u ( ) b u ( ) ]

Er _ K

The integrand of the first integral of (6.11) equals
V V V

[k U (x) + I U (x )bU (x)1 - [k C- ( x )  + ~~ (x)h 
C CX)] - (~~

u
(X) - ~~ (x))h 

C
CX)

The remarks below (6.10),
/ and the fact that ~ (A) 

-
~~ 0 as ~ CA ) 0 uniformly in vL~)

and A (Theorem 4.2)) imply both that the first integral on the r.h.s.

of (6.11) goes to zero , as £ 0, and the theorem. Q.E.D. 



Remark on the Corollary. The corollary was given because it

wi ll probably be useful when used in conjunction with a procedure

for computing or estimating ~U ( .)  Usually, we would not be able

to calculate c~~ .) exactly ,  and the corollary asser ts that, even

if the c-o~ putation is approximate , its use to get a control may

yield good results , since the cost is “con tinuous in i~~~ (~~ ) ” , in a

sense , provided that ~~ ( d x )  I J
U
(x) j 0 as N cc , un iformly in

E
r_S

N

- ? ( . ) ~~~ h’e wou ld expec t that this lat ter condition would hold quite

O t t er

:ht n o  ( . 2 .  Assume (Al) — CA2 ) , (A4) — (A5) . Then has

- -~~~~~ • : r  s -:i t - t t  Lan ((.1).

; r n ) t . By Theorem 2.3 of Davis and Variaya [1], and the square 

- a u ,xm t  rabili~ -~ of 
~~~~ •

‘ there is a process 
~ 

C . )  such tha t

-)

E~ 
~U f X ( )  ~~~ for each t and such that

- O

rt
= ~

X I U
~~~~~~~(~~~~~~~) dW X

~~
U ( )  w.p.l. P~~.d o

‘ t  denote the class of continuous random functions that are

square integrable martingales under P~~, each x , and are also homogeneous

additive functions of the Markov process x( - ) , and which are adapted

to { -‘ } .  If N(s) C •~,
U 

then the quadratic variation <N ,N> t has

a representation which is a homogeneous additive non—decreasing function

of x(.). It does not otherwise depend on x(0) = x . (See , for

examp le , Mayer (151, Theorem 3 , p. 126. The result is also implied

• 
- 

• 1 ~ 
- 

•

• 
- -  - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - - - -~ ~~~~~~~~
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by Kunita and Watanabe [16], Appendix.) The processes MU (.)

and

w
X
~~
U (t )  = c 

1 (x (s)) [dx(s) - (f(x(s) ) + b
u
(X (S)))JdS]

~o

arc in V U Also Wx l u ( )  r1U ( . )  are both in ~~1U Then

+ MU , ~~
X ,U 

+ M
u>~ — <W

X ,U 
- M

U
, ~~
(,U 

— M
u>

t 
= 4<WX~

U 
M
U

is a homogeneous additive process. But

=

which must also have a representation as a homogeneous additive

function of xC - - ) ,  and which does not otherwise depend on x (0) = x .

Thus , there is a Borel funct ion ~~~~~~~~~~~~~~~~ 
not depending on x = x ( O ),

such that rU I X (s)Q(x(s)) = lp
ti ( x ( s ) 0 x s f l ,  fo r almost all s

w.p.l ~~~~ each x. Q.E.D.

-• - - . -•-~~~- -~~~~~~~~ ~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~ - 
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